Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

نویسندگان

  • Gourav Patel
  • Sharad Chaudhary
چکیده

Since long time, it has been noticed that refrigerators are the devices which work almost 365 days round the clock; hence objective of energy efficiency improvement attracts much. There are several ways of improving the performance of a vapor compression refrigeration cycle. Use of an ejector as expansion device is one of the alternative way. The advent of new component ‘Ejector’ into refrigeration system opened the new era of research. The vital component, which decides the effective operation of the ejector expansion refrigeration system, is the ejector. Hence, design of an ejector and analyses of its physical and operational parameters have drawn special attention. The thermodynamic analysis of natural refrigerant (R 170) based vapour compression refrigeration cycles is presented in this article using a constant pressure mixing ejector as an expansion device. Using ejector as an expansion device, R 170 yields a maximum COP improvement of 24.12 percent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exergy, exergoeconomic and exergoenvironmental studies and optimization of a novel triple-evaporator refrigeration cycle with dual-nozzle ejector using low GWP refrigerants

In this work, a novel dual-nozzle ejector enhanced triple-evaporator refrigeration cycle (DETRC) without separator is proposed to improve the performance of the conventional ejector one (CETRC). The performance of DETRC is analyzed and compared with CETRC in term of energy coefficient of performance (COPen). Under given operating conditions, the COPen improvement of the no...

متن کامل

Numerical Study on the Design of Microchannel Evaporators for Ejector Refrigeration Cycles

Two-phase ejectors are devices capable of improving the performance of refrigeration and air conditioning cycles by means of expansion work recovery. Ejector studies often focus on the design and performance of the two-phase ejector and the effect it can have on the performance of the ejector cycle. However, the ejector is not the only component of the system that can have a significant influen...

متن کامل

Transcritical CO2 Refrigeration Cycle with Ejector-Expansion Device

An ejector expansion transcritical CO2 refrigeration cycle is proposed to improve the COP of the basic transcritical CO2 cycle by reducing the expansion process losses. A constant pressure mixing model for the ejector was established to perform the thermodynamic analysis of the ejector expansion transcritical CO2 cycle. The effect of the entrainment ratio and the pressure drop in the receiving ...

متن کامل

Performance Investigation of Two Two-Stage Trans-Critical Carbon Dioxide Refrigeration Cycles Ejector and Internal Heat Exchanger

In the present work, the performances of improved two-stage multi inter-cooler trans- critical carbon dioxide (CO2) refrigeration cycles with ejector and internal heat exchanger have been examined. In the new improved cycles, an internal heat exchanger is append to the cycles. Also, second inter-cooler in improved cycles, cooled with the refrigeration of the cycle, so that in first c...

متن کامل

Parametric Study of a Vapor Compression Refrigeration Cycle Using a Two-Phase Constant Area Ejector

There are several ways of improving the performance of a vapor compression refrigeration cycle. Use of an ejector as expansion device is one of the alternative ways. The present paper aims at evaluate the performance improvement of a vapor compression refrigeration cycle under a wide range of operating conditions. A numerical model is developed and a parametric study of important parameters suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014